866 research outputs found

    Trajectory generation for road vehicle obstacle avoidance using convex optimization

    Get PDF
    This paper presents a method for trajectory generation using convex optimization to find a feasible, obstacle-free path for a road vehicle. Consideration of vehicle rotation is shown to be necessary if the trajectory is to avoid obstacles specified in a fixed Earth axis system. The paper establishes that, despite the presence of significant non-linearities, it is possible to articulate the obstacle avoidance problem in a tractable convex form using multiple optimization passes. Finally, it is shown by simulation that an optimal trajectory that accounts for the vehicle’s changing velocity throughout the manoeuvre is superior to a previous analytical method that assumes constant speed

    Design, analysis and investigation of an independent suspension for passenger cars

    Get PDF
    The objective of this paper is the design of a front suspension. The layout used is the McPherson strut, widely adopted for road cars due to its simplicity and to the limited space required. The handling, comfort and durability of the suspension are strictly related to the position of the hardpoints, and to the elastic elements. A sensitivity analysis is carried out to investigate the roll behavior of a standard vehicle during cornering. A multi-body dynamics software is used to perform ramp-steer simulations on a full-vehicle model. Results show the different peculiarities of three specific cases of analysis, each of them emphasising the effects of a specific parameter on the whole system

    Magnetotunneling as a Probe of Luttinger-Liquid Behavior

    Full text link
    A novel method for detecting Luttinger-liquid behavior is proposed. The idea is to measure the tunneling conductance between a quantum wire and a parallel two-dimensional electron system as a function of both the potential difference between them, VV, and an in-plane magnetic field, BB. We show that the two-parameter dependence on BB and VV allows for a determination of the characteristic dependence on wave vector qq and frequency ω\omega of the {\it spectral function}, ALL(q,ω)A_{\rm LL}(q,\omega), of the quantum wire. In particular, the separation of spin and charge in the Luttinger liquid should manifest itself as singularities in the II-VV-characteristic. The experimental feasibility of the proposal is discussed.Comment: Accepted for publication in Phys. Rev. Let

    Flow Phase Diagram for the Helium Superfluids

    Full text link
    The flow phase diagram for He II and 3^3He-B is established and discussed based on available experimental data and the theory of Volovik [JETP Letters {\bf{78}} (2003) 553]. The effective temperature - dependent but scale - independent Reynolds number Reeff=1/q=(1+α)/αRe_{eff}=1/q=(1+\alpha')/\alpha, where α\alpha and α\alpha' are the mutual friction parameters and the superfluid Reynolds number characterizing the circulation of the superfluid component in units of the circulation quantum are used as the dynamic parameters. In particular, the flow diagram allows identification of experimentally observed turbulent states I and II in counterflowing He II with the turbulent regimes suggested by Volovik.Comment: 2 figure

    Experimental Evidence for Resonant-Tunneling in a Luttinger-Liquid

    Full text link
    We have measured the low temperature conductance of a one-dimensional island embedded in a single mode quantum wire. The quantum wire is fabricated using the cleaved edge overgrowth technique and the tunneling is through a single state of the island. Our results show that while the resonance line shape fits the derivative of the Fermi function the intrinsic line width decreases in a power law fashion as the temperature is reduced. This behavior agrees quantitatively with Furusaki's model for resonant tunneling in a Luttinger-liquid.Comment: 3 pages, 5 figures, corrected typo

    Boundary interactions changing operators and dynamical correlations in quantum impurity problems

    Full text link
    Recent developments have made possible the computation of equilibrium dynamical correlators in quantum impurity problems. In many situations however, one is rather interested in correlators subject to a non equilibrium initial preparation; this is the case for instance for the occupation probability P(t)P(t) in the double well problem of dissipative quantum mechanics (DQM). We show in this paper how to handle this situation in the framework of integrable quantum field theories by introducing ``boundary interactions changing operators''. We determine the properties of these operators by using an axiomatic approach similar in spirit to what is done for form-factors. This allows us to obtain new exact results for P(t)P(t); for instance, we find that that at large times (or small gg), the leading behaviour for g < 1/2} is P(t)eΓtcosΩtP(t)\propto e^{-\Gamma t}\cos\Omega t, with the universal ratio. Ω/Γ=cotπg/2(1g)\Omega/\Gamma = \cot {\pi g}/{2(1-g)}.Comment: 4 pages, revte

    From Tomonaga-Luttinger to Fermi liquid in transport through a tunneling barrier

    Full text link
    Finite length of a one channel wire results in crossover from a Tomonaga-Luttinger to Fermi liquid behavior with lowering energy scale. In condition that voltage drop (V)(V) mostly occurs across a tunnel barrier inside the wire we found coefficients of temperature/voltage expansion of low energy conductance as a function of constant of interaction, right and left traversal times. At higher voltage the finite length contribution exhibits oscillations related to both traversal times and becomes a slowly decaying correction to the scale-invariant V1/g1V^{1/g-1} dependence of the conductance.Comment: 12 pages of RevTex file and 1 PS file figur

    Experimental investigation of the edge states structure at fractional filling factors

    Full text link
    We experimentally study electron transport between edge states in the fractional quantum Hall effect regime. We find an anomalous increase of the transport across the 2/3 incompressible fractional stripe in comparison with theoretical predictions for the smooth edge potential profile. We interpret our results as a first experimental demonstration of the intrinsic structure of the incompressible stripes arising at the sample edge in the fractional quantum Hall effect regime.Comment: 5 pages, 5 figures included. Submitted to JETP Letter

    Resonance in a Tomonaga-Luttinger liquid

    Full text link
    We study a homogeneous Tomonaga-Luttinger liquid with backscattering potential. A perturbative computation of the conductance at and near resonance is given. We find that the backscattering of one electron dominates that of two electrons for an interaction parameter K1/3K\geq 1/3 and that the resonance point depends on temperature. Our results may be relevant for recent experiments on shot-noise in FQHE, where the charge 1/3 and not 21/32*1/3 is measured on resonance.Comment: 15 pages, three Figures. v2: Definite version, Citations added, presentation improved. To appear in Phys. Rev. B, Rapid Co
    corecore